服务热线:400-033-7715 吉林变频器|长春变频器|白城变频器|松源变频器|白山变频器|辽源变频器|四平变频器|通化变频器|廷吉变频器   | 专业变频器维修中心 |


变频器控制柜_变频器|鸿宝专注于变频领域及变频控制系统

变频器控制柜_变频器|鸿宝专注于变频器及变频控制系统
网站首页 > 解决方案

变频器在起重机方面的应用

起重机的变频器控制及工作原理

1.升降吊车
升降吊车是重物装卸时不可缺少的工具,有时是生产线的组成部分,升降吊车的控制主要采用手动操作方式,但作为生产过程的一个组成部分,实现高定位精度、防振 动、平稳加减速等功能的自动控制是提高生产效率的有效方法。采用变频器控制可实现提升电动机与平移电动机的调速,且具有以下优点:平移时采用软启动和软停 止,可避免直接启动或用电磁制动器急刹车时所造成的振动,实现吊车的平稳运行,吊车提升与放下速度可随负载的作业内容任意变化;采用高速及低速两挡切换, 可提高停止精度,减小细微的位置校正次数,提高吊车的作业效率。


升降吊车配有升降、平移及行走目的的2~3台电动机,使其能在x、y、z轴3个方向自由移动。每台电动机根据其各自的用途分别配备变频器。选择电动机及变频 器容量时,应充分考虑上升时所吊重物的安全系数,停止及保存控制利用电磁制动器实现。吊车下放时为负负载,变为连续的再生运行状态,如果通用变频器电源不 具有反馈功能,当选用变频器及制动电阻时,其容量应留有充分的裕量。平移及行走电动机的变频器容量,应根据各自的需要选择相当于电动机容量或者大一点容量 的变频器,尤其在减速时,如果希望在短时间内停止,由于负载的惯性大,通常采用制动装置.


控制系统配置了防止提升超过极限的异常限制装置,一旦机器出现故障,则此限制开关动作,直接切断提升主体电源,使电动机停止,同时由电磁制动器动作保持住重物,为防止因变频器故障是吊车停止在半空中,系统中放置了异常放大控制回路,可从地面的悬吊式操作盒进行控制操作。


应用变频器控制后,由于电动机运行的开关元件为无触点式,使得电磁接触器具有半永久性寿命;电动机的起动电流被限制得很小,因此频繁起动及停止时电动机的热 耗降低,寿命延长;由于电磁制动器在低速时动作,故其衬里使用期得到延长,保养费用降低;吊车运行平滑,在加、减速时的冲击和振动变小,减小了负载摇晃, 运行安全性大幅度提高由于升降机精细的升降速度控制,有效提高了产品(如电镀抛光)的质量;对于锻模搬运升降机,可实现精确定位,以提高作业效率。

具体应用时应注意以下事项:变频器跳闸时电动机断电,因此行走失控或落下的危险性较大,应设计完善的安全装置,使得电磁制动器自动作用;在升降机上装置变频 器时,用选用变频器材料相同的耐高温及耐振材料;除了保持电滑轮不脱线外,还应采取其他安全措施,保持一旦突然断电时紧急制动器能够起作用,代替变频器工 作;由于变频器控制时电动机转矩比直接电源时的小,故应使电动机容量适当增大;在下放时电动机为连续再生运行状态,应充分考虑变频器在内的容量问题。


2.输送平台车
在工厂内各工段之间运送钢材等重物时,经常使用平台车,为提高平台车的运送速度、增加运载重量、提高运输能力,需要增大电动机的输出功率,同时传动装置的尺 寸及重量也会加大。为此,采用在工频以上的高速区内有恒功率输出特性的变频器控制,在不增加电动机尺寸的情况下,可有效增加运送能力,利用工频以上频率使 电动机加速,则不改变传动部分的尺寸即可实现高速化。对于平台车,在装载货物时,为防止货物倒塌,对其最高速度有限制。在卸货后,空载时负载转矩很小,可 加快运行速度,故可利用变频器的高速运行区域,由于拖动电动机装设在平台车上,如果环境条件较差,如粉尘多、振动强烈时,最适宜使用易于变频器控制的笼型 电动机。
运 送平台车一般有两台电动机传动,变频器容量为两台电动机容量之和,两台电动机始终按同一频率控制,即电动机之间没有大幅度的负载不平衡,即使在加、减速运 行时,两台电动机的负载转矩也适当分配,为防止在运行轨道的两端速度失控,必须考虑相应的安全措施,一般通过变频器实现电气制动(即再生制动)使平台车停 止。另外还要考虑在异常情况下能够使用电磁制动器紧急制动,实现停车。


3.塔式起重机
塔式起重机多用于工业及民用建筑施工,由于其提升高度大、司机室位置较高,因此操纵难度大,尤其是起吊时对吊重的快速、准确就位要求高,所以其起升机构调速 性能要好。传统的起升机构调速方法较多,由变极多速电动机调速机构、能耗制动调速机构、涡流制动调速机构等,这些调速机构都存在调速范围小、速度稳定性差 等缺点,无法长时间在低速下降载荷(大起重量的塔机低速运行时间都超过20%机构总运行时间)且可靠性低、维护量大、能耗高。
塔机起升机构电机应选用适合频繁启动、转动惯量小、启动转矩大的变频电机,目前国外以4极作为变频电机的首选极数,用变频器驱动异步电动机时,由于变频器的 换向以及开关元件瞬间开闭产生的冲击电压(浪涌电压)而引起电机绝缘恶化,因此对电压型PWM变频器,应尽量缩短变频器于电机之间的接线距离或考虑加入阻 尼回路(滤波器)。
塔 机起升机构控制系统中特别需防止溜钩,在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态下滑现象,成为溜钩。本控制系统中通过PLC和变频 器之间信号的适当配合,利用变频器具有的零速全转矩功能,可有效防止溜钩,其原理是在变频器在速度为0的状态下,保持电动机有足够大的转矩且不需要速度反 馈,可保证当吊钩由升降状态降速为0时电机能使重物在空中停止,直到电磁制动器将轴抱住为止,从而防止溜钩。


3.变频器制动单元
在采用变频器的交流调速控制系统中,电动机是通过降低变频器输出频率而实现减速的,当重载快速下降时,由于重力加速度的原因,电动机的旋转速度超过变频器输 出频率所对应的同步转速,电动机处于发电制动状态,负责的机械能将被转换为电能并被反馈给变频器,变频器直流回路的电容因充电而使电压升高,为了不使电压 过高而导致变频器的过电压保护电路动作切断变频器的输出,此时可在其直流电路中设一个三极管。当电压超过一定界限时,制动三极管将会导通,过剩的电能通过 与之相接的制动电阻转换为热能消耗掉,此装置即为变频器的制动单元。


信息来源:abc.chossoni.com


TAG:   变频器 原理 控制系统 故障